

Problem Sheet 9

Throughout this problem sheet let b, σ satisfy the Lipschitz and linear growth constraints for the existence and uniqueness of the associated SDE

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t \quad (1)$$

with $X_0 \in L^2(\Omega; \mathbb{R})$ independent of W .

Exercise 9.1

Let X be the unique solution of (1). Prove that for any $T \geq 0$,

$$\mathbb{E} \left(\sup_{t \in [0, T]} |X_t|^2 \right) < \infty.$$

Exercise 9.2

Denote by X^ε the solution of

$$dX_t^\varepsilon = b(t, X_t^\varepsilon)dt + \varepsilon \sigma(t, X_t^\varepsilon)dW_t$$

and X the solution of

$$dX_t = b(t, X_t)dt$$

with the same initial condition X_0 . Show that for any $T \geq 0$,

$$\lim_{\varepsilon \rightarrow 0} \mathbb{E} \left(\sup_{t \in [0, T]} |X_t^\varepsilon - X_t|^2 \right) = 0.$$

Exercise 9.3

Let $X_0 \in L^\infty(\Omega; \mathbb{R})$ and X the unique solution of (1). Prove that for a given $0 < \alpha < \frac{1}{2}$, there exists a modification \tilde{X} of X such that for $\mathbb{P} - a.e. \omega$, $\tilde{X}_\cdot(\omega) \in C^\alpha$.

Exercise 9.4

Let $f \in L^2([0, t]; \mathbb{R})$, $\lambda \geq 0$, and define

$$\xi = \int_0^t f_s dW_s, \quad Z_s = e^{\lambda \int_0^s f_r dW_r - \frac{\lambda^2}{2} \int_0^s f_r^2 dr}.$$

1. **Bonus Question:** Prove that Z is a genuine martingale on $[0, t]$.
2. Deduce that $\mathbb{E}(e^{\lambda \xi}) = e^{\frac{\lambda^2}{2} \int_0^t f_r^2 dr}$.
3. Further deduce that $\xi \sim N\left(0, \int_0^t f_s^2 ds\right)$.
4. If we replace f with a random progressively measurable $L^2(\Omega \times [0, t]; \mathbb{R})$ process, is ξ still normally distributed?

Exercise 9.5

Consider the simplified SDE

$$dX_t = b(X_t)dt + dW_t$$

with unique solution X , and the Euler-Maruyama Approximation as follows. Fix a time interval $[0, T]$ and $N > 0$, defining $h := \frac{T}{N} < 1$ and the times $t_n := hn$ for $0 \leq n \leq N$. Furthermore recursively define

$$X_{n+1} = X_n + hb(X_n) + W_{t_{n+1}} - W_{t_n}$$

with X_0 as given.

1. Show that there exists a constant C such that for all $t \in [t_n, t_{n+1}]$,

$$\mathbb{E}(|X_t - X_{t_n}|^2) \leq Ch.$$

2. Prove that there exists a constant C such that for all n ,

$$\mathbb{E}(|X_{t_n} - X_n|^2) \leq (1 + h) [(1 + Ch) \mathbb{E}(|X_{t_{n-1}} - X_{n-1}|^2) + Ch^2].$$

3. Deduce that there exists a constant C such that for sufficiently small h and $t \in [t_n, t_{n+1}]$,

$$\mathbb{E}(|X_t - X_n|^2) \leq Ch.$$